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Abstract 

Ions in the bulk of solvent-free ionic liquids bind into ion pairs and 

clusters. The competition between the propensity of ions to stay in a 

bound state, and the reduction of the energy when unbinding in electric 

field, determines the portion of free ions in the electrical double layer 

(EDL). We present the simplest possible mean-field theory to study this 

effect. ‘Cracking’ of ion pairs into free ions in electric field is 

accompanied by the change of the dielectric response of the ionic liquid. 

The predictions from the theory are verified and further explored by 

molecular dynamics simulations. A particular finding of the theory is 

that the differential capacitance vs potential curve displays a bell shape, 

despite the low concentration of free charge carriers, because the 

dielectric response reduces the threshold concentration for the bell- to 

camel-shape transition. The presented theory does not take into 

account overscreening and oscillating charge distributions in the 

electrical double layer. But in spite of the simplicity of the model, its 

findings demonstrate a clear physical effect: a preference to be a 

charged monopole rather than a dipole (or higher order multipole) in 

strong electric field. 

Keywords: ionic liquids, ion pairs, unbinding, differential capacitance   
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Introduction 

Electrochemical double layer (EDL) capacitors, also called 

supercapacitors, store energy by forming EDLs at electrodes.[1] They 

have significantly higher power density than conventional Li-ion 

batteries, because their charging process does not involve any 

electrochemical reactions, but just rearrangements of ions.[2] Owing to 

that they also have significantly longer operating life times, sustaining 

millions of charging-discharging cycles; whereas Li-ion batteries can 

only undergo only a few thousand cycles.[3] One of the priorities in 

supercapacitor research is the increase of energy density which is 

inferior to those of batteries. An avenue to rectify this is massively 

increasing the surface area of the electrode-electrolyte interfaces, by 

using micro- and mesoporous electrodes.[1] Another approach is the 

utilization of electrolytes that sustain higher applied voltages without 

undergoing electrochemical reactions. The exploit of ionic liquids (ILs), 

with their excellent thermal stability, nonvolatility, and relatively inert 

nature, enables one to attain higher operation voltages than aqueous 

and even organic electrolytic solutions, and thereby facilitates the 

storage of more energy.[4-6] Accurate theoretical description of the 

behavior of ILs in the EDL and, specifically of charge distribution and 

double layer capacitance, is a premise to understand their performance 

in supercapacitors (for review see Refs. 7 and 8). 

     Many modified Poisson-Boltzmann (PB) theories of the EDL, of 

different levels of complexity, have been put forward.[9-21] The majority 

of them model the system as ions embedded in a continuum medium 

with constant permittivity, which, as first pointed out by Debye, is 

insufficient to depict reality because the dielectric saturation effect on 

solvent polarizability is not considered.[22] Onsager, Kirkwood and 

Booth developed theories to account for this issue, that involved the 
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reduction of the dielectric constant of the solvent in the vicinity of 

electrode.[23-26] The dielectric constant affects how efficiently ions screen 

the electric field, and therefore it is closely related to the properties of 

the EDL, such as the differential capacitance (𝐶 ).[26-30] The reduced 

dielectric response of the solvent would generally result in a decreased 

𝐶 . Hence, more recently, researchers have modified their models to 

include the permanent dipoles and the excluded volume of solvents and 

ions, as well as the solvent quadrupolarizability.[31-36]  

     Little attention, however, has been put into the variation of the 

dielectric response in neat ILs with transient ion-pairing.[37, 38] In such 

a solvent-free system, the dielectric constant is predominantly 

contributed by transient ionic pairs and ions with dipole moments. 

Whereas Ref. 37 has studied the interchange between free and 

clustered ionic states, it is equally, if not more, important to study 

equilibria between such states in EDL, which is the subject of article. 

     In this work, we formulate a mean-field lattice-gas model of the 

EDL in a simplified IL system with consideration of the dipole moment 

of ion pairs, considering for simplicity the clustering at the ion pair level. 

This is, of course, a strong idealization, but it is a first step in this 

direction, which helps to elucidate the main qualitative effect: 

‘liberation’ (declustering) of ions in the strong electric field of the double 

layer. This effect and the whole idea of the field-induced declustering is 

in spirit of the old classical Damaskin-Frumkin-Parsons cluster model 

of the compact layer capacitance in aqueous electrolytes.[39, 40] But we 

will explore its manifestations in the whole double layer of ionic liquid 

electrolytes.  

     Firstly, we derive an analytical expression for the field-dependent 

local dielectric constant (𝜖d). Then, we describe the behavior of ion pairs 

in and out of EDL, followed by the comparison of the predicted number 
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density distribution of ions bound in ion pairs with the corresponding 

values obtained in molecular dynamics (MD) simulations. In addition, 

we investigate the behavior of differential capacitance as a function of 

electrode potential, which demonstrates a new trend in the “camel-bell 

transition”,[14] and is different from the prediction of the theory that 

does not take dielectric response into account. 

The theory itself, should, of course, be taken with a ‘pinch of salt’: 

at best it can claim only qualitative results, as it does not incorporate 

the effect of overscreening and the decaying oscillations of charge 

density and electrical potential in the EDL.[7, 18] Therefore, the presented 

tests of its conclusions by MD simulations become critical.   

 

Methods 

The model and mean-field theory 

We consider a system where ions exist in two states: free state and 

bound state, with interchange between them. For simplicity of analysis, 

we assume that cations and anions in free state are of the same size, 

monovalent with charge ±𝑒  and do not possess permanent dipole 

moments (which, strictly speaking, can be true only for a limited 

number of ILs),[7] with their electronic polarizability determining an 

effective dielectric constant (𝜖e) of a hypothetic ‘liquid of free ions’. Ions 

in the bound state, on the other hand, are assumed to be composed of 

cation-anion pairs; this ‘ion-pair’ assumption (i.e. avoiding special 

description of larger pairs) dramatically simplifies the formalism.[41] 

Because of the highly nonuniform charge density of ILs,[7, 42] the dipole 

moment of an ion pair is taken to be a fraction of the “full” dipole 
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moment, i.e. 𝑝 = 𝑚 ∙ 𝑒 ∙ 𝑎, where 𝑎 is the ion diameter (taken as 1 nm 

throughout this study), while 𝑚 a coefficient between 0 and 1 (c.f. Ref. 

40). We employ a lattice-gas model to depict such ‘ionic liquid’ in 

contact with a charged surface, as illustrated in Figure 1a. 

 

Figure 1. (a) Schematic of the lattice-gas description of the ionic 

liquids consisting of ‘free’ ions and those bound in ion pairs (red 

arrow). (b) Snapshot of the MD system with cations (red spheres) and 

anions (blue spheres). The cation and anion are defined as a bound-

state ion pair when their ion centers are within a certain distance 

from each other, taking such distance to be the sum of the radii of 

the oppositely charged ions.[37] 

      

The free energy functional for this lattice-gas model can be 

approximated as[14]  
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𝐹 = ∫ 𝑑𝐫 (−
1

2
𝜖0𝜖e𝐸2 + 𝑒𝜙(𝑛+ − 𝑛−)  + 𝑓free(𝑛+ − 𝑛−) + 𝑓bound(𝑛 − 𝑛+ − 𝑛−)

−
1

2
(𝑛 − 𝑛+ − 𝑛−)𝑘B𝑇 ln

sinh (
𝑝𝐸

𝑘B𝑇
)

𝑝𝐸
𝑘B𝑇

− 𝑘B𝑇𝑛ref ln
(

𝑛
𝑛ref

) !

(
𝑛+
𝑛ref

) ! (
𝑛−
𝑛ref

) ! (
𝑛 − 𝑛+ − 𝑛−

2𝑛ref
) !

). 

(1) 

where 𝜖0 is the vacuum permittivity, 𝜖e is the dielectric constant of IL 

constituted of free ions exclusively due to their electronic 

polarizability,  𝐸  (𝐸 = −∇𝜙) is the electric field, 𝜙  is the electrostatic 

potential, 𝑓free and 𝑓bound are the intrinsic free energy per free ion and 

bound ion, 𝑛𝑖 is the number density of free ions (𝑖 = +, −) in the unit of 

nm-3, 𝑛  is the number density of total lattice sites, and 𝑛ref  is the 

reference number density (𝑛ref = 1/𝑎3), 𝑘B𝑇 is the thermal energy with 

𝑘B  and 𝑇 being the Boltzmann constant and absolute temperature, 

respectively. 

     The first term in Eq. (1) corresponds to the self energy of the 

electrostatic field while the second term denotes the electrostatic energy 

of free ions. Both terms are needed in order to derive the modified 

Poisson equation. From the third and fourth term, we can obtain the 

fraction of free ions in the bulk IL, 𝛾, by the following equation analyzed 

in detail in Ref. 43, 

𝑓free − 𝑓bound + 𝑘B𝑇 ln (
𝛾

2(1 − 𝛾)
) = 0. (2) 

The fifth term accounts for the orientational contribution of ion pairs. 
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The last term in Eq. (1) describes the configurational entropy of the 

distribution of free ions and ion pairs on the lattice. We introduce 𝑛ref 

to ensure a correct dimension. Its value will, of course, affect the 

magnitude of the free energy density, 𝑓, and electrochemical potential, 

𝜇𝑖, but will not change the expression of the number density, 𝑛𝑖, and 

differential capacitance, 𝐶, as shown in the Appendix. 

     The number density of ions bound in ion pairs, 𝑛bound, is derived 

by equalizing the electrochemical potential of each species (𝜇𝑖 = 𝜕𝑓/𝜕𝑛𝑖) 

with their counterparts in the bulk IL (analyzed in detail in the 

Appendix), and employing the relation 𝑛bound = 𝑛 − 𝑛+ − 𝑛−,  

𝑛bound

𝑛

=
(1 − 𝛾) (

sinh(𝑝𝐸/𝑘B𝑇)
𝑝𝐸/𝑘B𝑇

)

1
2

𝛾
2 exp(−𝑒𝜙/𝑘B𝑇) +

𝛾
2 exp(𝑒𝜙/𝑘B𝑇) + (1 − 𝛾) (

sinh(𝑝𝐸/𝑘B𝑇)
𝑝𝐸/𝑘B𝑇

)

1
2

. 
(3) 

And the relation holds: 
𝑛bound

𝑛
|bulk = 1 − 𝛾 . A detailed derivation of 

𝑛+ and 𝑛−, following the approach of Ref. 19, is shown in the Appendix. 

     The modified Poisson equation and the expression for field-

dependent local dielectric constant are obtained by substituting the free 

energy functional into Euler-Lagrange equation 
𝜕

𝜕𝑥

𝜕𝑓

𝜕𝜙′
−

𝜕𝑓

𝜕𝜙
= 0, analyzed 

in detail in the Appendix, and are given by, 

d

d𝑥
(𝜖0𝜖d

d𝜙

d𝑥
) = −𝑒(𝑛+ − 𝑛−), (4) 
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𝜖d = 𝜖e +
 (𝑛 − 𝑛+ − 𝑛−)𝑝ℒ(𝑝𝐸/𝑘B𝑇)

2𝜖0𝐸
. (5) 

where ℒ(𝑠) = (coth(𝑠) − 1/𝑠) is the Langevin function.[32] The first term 

in Eq. (5) describes the electronic degrees of freedom of ions, and the 

second term originates from the orientational ordering of ion pairs. 

Through the factor (𝑛 − 𝑛+ − 𝑛−), 𝜖d is affected by the interchange of 

ions between free and bound states. 

Molecular dynamics simulations 

As shown in Figure 1b, our MD simulation system consists of two 

identical electrodes with a slab of IL enclosed between them. The 

distance between two electrodes is 30 nm, which is sufficiently large to 

ensure electroneutrality and bulk-like IL behavior in the middle of the 

system (not perturbed by the electrodes). The force fields of the 

electrodes and ILs are taken from Ref. 44; each electrode is made of 

Lennard-Jones (LJ) spheres arranged in a square lattice with a lattice 

spacing of 0.33 nm. The cations and anions of ILs are modeled as 

symmetrical LJ spheres with 1 nm diameter and opposite unit charge, 

i.e. the model of ions is also made as simple as possible to be able to 

compare it with the Coulomb lattice gas theory. The cation and anion 

are defined as a bound-state ion pair when their ion centers are within 

a certain distance from each other, and such distance was taken to be 

the sum of the radii of the oppositely charged ions.[37] 

     Simulations were performed in the NVT ensemble using the 

GROMACS package.[45] The temperature was maintained at 450K with 

Nosé-Hoover thermostat (the temperatures where elevated because 

ideal, identical size charged Lennard-Jones spheres tend to freeze at 
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room temperature). Particle-mesh Ewald (PME) summation, which is 

proposed by Darden to improve the performance of the reciprocal sum, 

was performed for computing long-range interactions (e.g., the 

electrostatic interactions).[46] In order to eliminate artifacts of the 

periodicity in the direction perpendicular to the electrodes, the length 

of the simulation box in this direction was set to be three times the 

width between the electrodes. The equilibration was performed for 5 ns 

with time step of 0.01 ps, following by another 20 ns production for 

further analysis.  

     The electrical potential distribution was calculated as, 

𝜙(𝑧) = −
𝜎

𝜖0𝜖e
𝑧 −

1

𝜖0𝜖e
∫ (𝑧 − 𝑧′)𝜌(𝑧′) 𝑑𝑧′

𝑧

0

. (6) 

Here 𝜎 is the surface charge density, 𝜖e is assigned value 2 in our 

simulations, and 𝜌  is the ionic charge density along the direction 

perpendicular to the electrodes. Thus, the potential drop across the 

EDL (𝜙EDL) is calculated relative to the potential of zero charge (PZC),[47] 

𝜙EDL = (𝜙electrode − 𝜙bulk) − (𝜙electrode − 𝜙bulk)|PZC. (7) 

where 𝜙electrode and 𝜙bulk  are, respectively, the potential on the 

electrode surface and in the bulk. 

Results and discussion 

Number density profiles 

In what follows, we articulate the theoretical prediction in terms of the 

number density of ions bound in ion pairs, 𝑛bound, and then compare it 

with our MD simulations. We set 𝑛bound/𝑛 in bulk IL from theory the 
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same as that from simulations. In this case, 𝑛bound/𝑛 in bulk IL are 

determined to be both 0.54, and the corresponding portion of free ions, 

𝛾, is 0.46, without invoking Eq. (2). The dipole moment of an ion pair is 

set as 8.8 × 10−29 C m (0.45𝑒 ∙ 𝑎) in order that 𝜖d at bulk IL is around 15, 

the typical value.[7] Figure 2a,b show 𝑛bound  at different electrode 

potentials. The reader should not be worried that the shown range of 

electrode potentials is much wider than the typical electrochemical 

window for electrode potentials in ionic liquids, which is rarely larger 

than 3 V.[48, 49] The goal of going to such extremes, is to show the trend 

in de-clustering that would favor the monopole ions rather than ion 

pairs. Firstly, we focus on the 𝑛bound profile at 𝜙EDL being -8 V from the 

theory side, where it first increases and then decreases as approaching 

the electrode from the bulk. The hump in the 𝑛bound profile is attributed 

to the presence of two competing forces affecting ion pairs: they tend to 

exist in regions of higher electric fields because of polarization, however, 

sufficiently high electric fields ultimately unbind the ion pairs into free 

ions. 

In addition, Figure 2a shows that as a higher charge accumulates 

on the electrode, the unbinding of ion pairs causes the hump of 𝑛bound 

profile to reside further away from the electrode, which, as depicted in 

Figure 2b, is corroborated by MD simulations. Particularly, the 

locations of the humps at -0.5 V (blue curve) and -5.5 V (orange curve) 

obtained from theory are in good agreement with those from MD 

simulations. It is worth reiterating that because of the local-density 

nature of our mean-field theory, the layered structure inherently 

revealed by the MD simulation cannot be captured, which explains why 

the single hump in theory continuously moves toward the bulk as the 
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electrode potential gets higher biased, whereas in simulations we see a 

layered structure of several humps, and their location is weakly affected 

by the electrode potential.[50] 

   

Figure 2. (a-b) The number density profiles of ion pairs obtained from 

theory (a) and MD (b), respectively. 𝑇 = 450 K, 𝑛bound/𝑛 in bulk IL is 

0.54 and the corresponding 𝛾 = 0.46 . For the theory side, 𝑝 =

0.55 × 𝑒𝑎 = 8.8 × 10−29 C m. For the MD side, the total number density 

of ions, both free and bound, in bulk IL is 0.62 nm-3 (lower than 1 

nm-3 from the theory side). The fraction of ions bound in ion pairs in 

bulk IL is 0.54, and therefore the corresponding 𝑛bound is 0.34 nm-3. 

(c) Snapshots of the MD simulations performed at 𝜙EDL being -0.5 V 

(blue dot), -5.5 V (orange dot) and -8 V (yellow dot). 

 

Figure 3 displays the theoretically obtained 𝜖d [Eq. (5)] profile at -

0.5, -5.5 and -8 V. It is shown that 𝜖d experiences a drastic decrease 

from 15 to almost 2 as approaching the electrode. This stems from the 

prediction that ion pairs unbind in the EDL, and therefore the dielectric 
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screening is reduced.  

  

Figure 3. Field-dependent local dielectric constant profiles in the 

vicinity of the electrode with different potential drops obtained from 

theory. The parameters are set to be the same as those in Figure 2. 

The spatial variations of 𝜖d originate from its dependence on field. 

 

Differential capacitance  

The traditional wisdom in the IL-based EDL theory articulates that the 

differential capacitance curve in the primitive model displays a camel 

shape if the fraction of free charge carriers in the bulk electrolyte is 

lower than 1/3.[14] However, the incorporation of the ion pairs in the 

present model changes the threshold ( 𝛾 = 1/3 ) of the “camel-bell 

transition”. In this section, we investigate the differential capacitance 

vs potential (𝐶 − 𝜙EDL) curve of the case where 𝛾 is 0.2 (lower than 1/3, 

different from 0.54 used in the previous section), and see if it displays 

a camel shape which is predicted by the primitive model. For the 

present and primitive models, we set 𝜖d as 10.5 in bulk IL (different 

from 15 used in the previous section) and therefore the dipole moment 

of the present model is 4.8 × 10−29 C m (0.3𝑒 ∙ 𝑎). As revealed by Figure 

4a, the present model may well show a bell-shaped 𝐶 − 𝜙EDL  curve 

despite 𝛾  is lower than the 1/3 threshold, contrary to the camel-
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shaped dashed curve predicted by the primitive model employed in Ref. 

14. The model, of course, could give a 𝐶 − 𝜙EDL curve of camel shape, 

but the corresponding number density would be lower than 1/3 and 

dependent of the magnitude of 𝑝. On the other hand, the model gives a 

lower 𝐶  than the primitive model,[14] which is explained by the 

reduction in the dielectric screening depicted in Figure 4b. No matter 

how the electrode is charged, the 𝜖d at electrode-electrolyte interface, 

𝜖d
surf, remains unaltered in the primitive model. In the present model, 

however, ion pairs near the electrode-IL interface shift to free state, 

resulting a decreased 𝜖d
surf. 

     This finding serves as a reminder for us when interpreting 

experimental data: a bell-shaped 𝐶 − 𝜙EDL curve from experiment may 

not be a certain indicator of highly dissociated electrolyte, instead, it 

may be a result of the formation and break-down of ion pairs (or larger 

ion clusters). 
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Figure 4. (a) Differential capacitance curves of the primitive model 

(dashed line) and present model (solid line).[14] In both cases, 𝛾 = 0.2. 

In the present model, 𝑝 = 0.3 ∙ 𝑒𝑎 = 4.8 ∙ 10−29 C m. 𝑇 = 300 K.  (b) Field-

dependent local dielectric constant at electrode | electrolyte interface 

vs electrode potential curve. Dashed line: primitive model; solid line: 

present model. In both cases, 𝛾 = 0.2. For both models, 𝜖d is 10.5 in 

the bulk. 

 

Conclusions 

In this work, we proposed a mean-field lattice-gas theory of the EDL in 

an IL system with transient paired ions bearing dipole moments. Using 

the analytical expression for the field-dependent local dielectric 

constant, we obtained the number density distribution of ion pairs, 

which was compared with MD simulations. Whereas the majority of 

ions in the bulk of solvent-free ionic liquids are bound, they shift to free 

state in the EDL, where the high electric field ‘prefers’ to interact with 
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free ions. The decrement of 𝜖d at the electrode-electrolyte interface led 

to the reduction of the threshold of “camel-bell transition”; that is, even 

if the proportion of free charge carriers is lower than the ‘canonical 

threshold’, 1/3, the 𝐶 − 𝜙EDL curve may well display a bell shape. 

     As mentioned in the Introduction, the model explored here is crude. 

Even using the concept of local dielectric constant at such distances is 

problematic (see multiple works on the nonlocal electrostatic theory of 

the electrical double layer).[51, 52] But as a qualitative signature of the 

effect, it sounds convincing: bound ions, for mere simplicity considered 

here as cation-anion pairs, are liberated into free states by the electric 

field inside the EDL.  
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Appendix 

Taking the variation of the free energy density, 𝑓, with respect to 𝑛𝑖 

yields dimensionless electrochemical potential of cations and anions: 

𝜇+ =
𝑒𝜙

𝑘B𝑇
+

1

2
ln

sinh (
𝑝𝐸

𝑘B𝑇
)

𝑝𝐸
𝑘B𝑇

− ln
(

𝑛 − 𝑛+ − 𝑛−

2𝑛ref
)

1
2

𝑛+

𝑛ref

, (8) 

𝜇− = −
𝑒𝜙

𝑘B𝑇
+

1

2
ln

sinh (
𝑝𝐸

𝑘B𝑇
)

𝑝𝐸
𝑘B𝑇

− ln
(

𝑛 − 𝑛+ − 𝑛−

2𝑛ref
)

1
2

𝑛−

𝑛ref

. (9) 

In the bulk, the electric field is totally screened and the 

electrostatic potential is taken to be zero; and we have 𝑛+ = 𝑛− = 𝑛0 =

𝛾𝑛/2  due to electric neutrality where 𝑛0 denotes the number density 

of cations (or anions) in the bulk.  

     Equalizing the electrochemical potential of each species to its 

counterpart in the bulk electrolyte, we obtain 

𝑒𝜙

𝑘B𝑇
+

1

2
ln

sinh (
𝑝𝐸

𝑘B𝑇
)

𝑝𝐸
𝑘B𝑇

− ln
𝑛0

𝑛+
(

𝑛 − 𝑛+ − 𝑛−

𝑛 − 𝑛0 − 𝑛0
)

1
2

 = 0, (10) 
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−
𝑒𝜙

𝑘B𝑇
+

1

2
ln

sinh (
𝑝𝐸

𝑘B𝑇
)

𝑝𝐸
𝑘B𝑇

− ln
𝑛0

𝑛−
(

𝑛 − 𝑛+ − 𝑛−

𝑛 − 𝑛0 − 𝑛0
)

1
2

 = 0. (11) 

Note here 𝑛ref is cancelled. Trivial rearrangements give 

exp (
𝑒𝜙

𝑘B𝑇
) (

sinh (
𝑝𝐸

𝑘B𝑇
)

𝑝𝐸
𝑘B𝑇

)

1
2

=
𝑛0

𝑛+
(

𝑛 − 𝑛+ − 𝑛−

𝑛 − 𝑛0 − 𝑛0
)

1
2

, (12) 

exp (−
𝑒𝜙

𝑘B𝑇
) (

sinh (
𝑝𝐸

𝑘B𝑇
)

𝑝𝐸
𝑘B𝑇

)

1
2

=
𝑛0

𝑛−
(

𝑛 − 𝑛+ − 𝑛−

𝑛 − 𝑛0 − 𝑛0
)

1
2

. (13) 

     To simplify further derivations, we will use a kind of interpolation 

approximation to the right-hand sides of these two equations. We 

brutally omit the square root there. Indeed the (
𝑛−𝑛+−𝑛−

𝑛−𝑛0−𝑛0
)

1

2
  and 

𝑛−𝑛+−𝑛−

𝑛−𝑛0−𝑛0
 

have the same limiting behaviors: both are 0 when 𝑛+ + 𝑛− = 𝑛, and 

both are equal to 1 when 𝑛+ + 𝑛− = 2𝑛0. In between, this function would 

of course, be different, but the difference is not large and will not 

qualitatively affect the results. Such an approach has been used, in Ref. 

19. We can then get simple analytical expressions for 𝑛+ and 𝑛− 

𝑛+

𝑛
=

𝑛0 exp (−
𝑒𝜙

𝑘B𝑇
)

𝑛0 exp (−
𝑒𝜙

𝑘B𝑇
) + 𝑛0 exp (

𝑒𝜙
𝑘B𝑇

) + (𝑛 − 𝑛0 − 𝑛0) (
sinh (

𝑝𝐸
𝑘B𝑇

)

𝑝𝐸
𝑘B𝑇

)

1
2

, 

(14) 
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𝑛−

𝑛
=

𝑛0 exp (
𝑒𝜙

𝑘B𝑇
)

𝑛0 exp (−
𝑒𝜙

𝑘B𝑇
) + 𝑛0 exp (

𝑒𝜙
𝑘B𝑇

) + (𝑛 − 𝑛0 − 𝑛0) (
sinh (

𝑝𝐸
𝑘B𝑇

)

𝑝𝐸
𝑘B𝑇

)

1
2

. 

(15) 

     The number density expression for bound ions is given by 𝑛bound =

𝑛 − 𝑛+ − 𝑛− and is shown by Eq. (3). 

 

Derivation of the modified Poisson equation and field-dependent local 

dielectric constant 

Now, we develop the modified Poisson equation as well as the 

expression for 𝜖d. Substituting the free energy functional into Euler-

Lagrange equation 
𝜕

𝜕𝑥

𝜕𝑓

𝜕𝜙′ −
𝜕𝑓

𝜕𝜙
= 0, we obtain 

𝜖0𝜖e

d𝐸

d𝑥
+

d

d𝑥
(

1

2
(𝑛 − 𝑛+ − 𝑛−)𝑝ℒ(𝑝𝐸/𝑘B𝑇)) = 𝑒(𝑛+ − 𝑛−), (16) 

where ℒ(𝑠) is the Langevin function, defined in the main text. 

Rearrangement gives 

d

d𝑥
(𝜖0 (𝜖e +

(𝑛 − 𝑛+ − 𝑛−)𝑝ℒ (
𝑝𝐸

𝑘B𝑇
)

2𝜖0𝐸
) 𝐸) = 𝑒(𝑛+ − 𝑛−), (17) 

Finally, we obtain the modified Poisson equation 

d

d𝑥
(𝜖0𝜖d

d𝜙

d𝑥
) = −𝑒(𝑛+ − 𝑛−). (18) 

where 𝜖d denotes the field-dependent local dielectric constant of the 
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system, given by 

𝜖d = 𝜖e +
(𝑛 − 𝑛+ − 𝑛−)𝑝ℒ (

𝑝𝐸
𝑘B𝑇

)

2𝜖0𝐸
. (19) 
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